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Abstract: A chronic brain blood-flow imaging device was developed for cerebrovascular 
disease treatment. This device comprises a small complementary metal-oxide semiconductor 
image sensor and a chronic fiber-optic plate window on a mouse head. A long-term cerebral 
blood-flow imaging technique was established in a freely moving mouse. Brain surface 
images were visible for one month using the chronic FOP window. This device obtained brain 
surface images and blood-flow velocity. The blood-flow changes were measured in 
behavioral experiments using this device. The chronic brain blood-flow imaging device may 
contribute to determining the cause of cerebrovascular disease and the development of 
cerebrovascular disease treatment. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

In drug discovery and disease research, small experimental animals are used for the 
evaluation of treatments. However, long-term and repeated behavioral experiments with the 
same small experimental animal are difficult. A chronic window technique on the small 
animal brain was developed to solve this issue [1,2] and to enable repeated brain imaging 
with a living mouse. This technique implants a thin glass on the brain surface, allowing 
observation with an imaging microscope through the glass. However, this technique observes 
the brain surface of an anesthetized mouse or a head-fixed mouse. This technique does not 
use a behavioral experiment with a freely moving mouse. For a freely moving condition, an 
optical-fiber imaging technique [3,4] and a miniaturized microscope technique [5,6] were 
developed. These techniques realized chronic brain imaging. In previous studies, an 
implantable complementary metal-oxide semiconductor (CMOS) device was developed for 
blood-flow imaging, and an implantable micro imaging device was developed for deep-brain 
imaging [7–9]. These devices successfully obtained brain activities. However, the imaging 
area and imaging setup were not adjustable after implementation. In long-term experiments, 
the implanted device moved in the brain, and the imaging area was obstructed. Additionally, 
these devices [10,11] did not observe brain-surface images for a long time, because the 
structures of the devices damaged the brain surface. In this study, a blood-flow imaging 
device was developed for long-term and repeated behavioral experiments with the same small 
experimental animal. Blood-flow imaging was performed in the sensory cortex of a mouse 
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2. Materials and methods 

2.1 Chronic brain blood-flow imaging device for the cerebral blood flow of the mouse 

The chronic brain blood-flow imaging device was developed for long-term mouse cerebral 
blood-flow measurement in a behavioral experiment. See Fig. 2(a). This device includes a 
CMOS image sensor, green light-emitting diode (LED) for light sources, and a fiber-optic 
plate (FOP) on a flexible printed circuit (FPC) (TAIYO INDUSTRIAL CO., Japan) in Fig. 
2(b). The CMOS image sensor was designed and fabricated using the standard CMOS process 
(0.35-μm, 2-poly-4 metal CMOS; Austria Microsystems, Austria). The pixel size of the 
CMOS image sensor was 7.5 × 7.5 μm, and this sensor held 120 × 268 pixels. This device had 
six green LEDs (EPISTAR Corp., Taiwan) with an emission wavelength of 535 nm, located 
around the sensor as light sources. This wavelength is one of the absorption spectral peaks of 
hemoglobin in the blood. At this wavelength, blood flow is measured from the hemoglobin in 
the blood vessels. The LED size was 280 × 300 μm. Parts of the device were connected to 
other parts using a wire-bonding tool. Finally, an FOP (Hamamatsu Photonics, Japan) was 
mounted on the component side of the CMOS image sensor and LEDs. In this study, we used 
a high-resolution FOP J5734. The FOP is comprised of a bundle of micron-sized optical 
fibers. The diameter of the optical fiber was 3 μm. An incident image from an end face of the 
FOP was transmitted to the opposite side of the FOP. The FOP had the same optical quality as 
an optical fiber bundle for image transmission. In this study, alignment of FOP and CMOS 
was less affected, because the resolution of the CMOS image sensor (7.5 μm) was much 
larger than the resolution of the FOP (3 μm). In this study, we used a surface irradiation 
CMOS image sensor. When we mounted the sensor on the substrate, we wire-bonded the 
same surface of the CMOS image sensor. However, the CMOS image sensor did not closely 
attach to the chronic FOP window, because the imaging surface was not flat by the bonding 
wire. Therefore, we put the FOP on the pixel array area of the image sensor to make a flat 
surface. The FOP raises the imaging surface higher than the wire-bonding area. Because of 
this structure, the chronic brain blood-flow imaging device captured a clear brain surface 
image with a high spatial resolution and light intensity. Black paint was used to shield the 
side of the device (CANON CHEMICALS INC., Japan). The weight of the device was 0.40 
g, 1/50 of an adult mouse. The power of the LED was 50–100 mW/mm. We adjusted light 
power for each experiment. The illumination uniformity was obtained by arranging 6 LEDs 
around the CMOS image sensor. The LED light was scattered onto the brain surface, because 
the brain tissue is a light-scattering material. 

The input and output signals of the image sensor were transmitted to a control board 
through a small relay board using four wires. The relay board contained an operational 
amplifier and a digital buffer used to regenerate the attenuated signals. The light intensity was 
controlled using a current generator through a small relay board. The control board included a 
digital–analog converter for transmitting signals to a personal computer (PC), because the 
sensor output contained analog signals. The analog output signals transmitted from the sensor 
were converted to 14-bit digital data. All the signals were controlled using an original PC 
program. In this experiment, the images were stored in the PC. Maximum frame rate was 120 
Hz. 
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2.4 Blood-flow imaging and behavioral experiment 

The blood-flow changes in the brain were obtained from changes in the reflection of the green 
light using the pixel value in the CMOS image sensor. The pixel-value data, stored in the PC, 
were analyzed by an original program written using Matlab. In the blood-flow velocity 
analysis, the velocity was shown as segments of the line scan along the blood vessel, plotted 
over time. The dark stripes corresponded to the red blood cells traveling along the length of 
the vessel, and the slope of the lines was proportional to the speed at which the hemoglobin 
traveled. We prepared the line-scan image with the distance, x (mm), of the measured blood 
vessel on the abscissa at time, t (s), of the scan of the ordinate. We calculated blood-flow 
velocity, V (mm/s), from V = x/Δt. Δt is the changing time of the slope of the line-scan 
image. We detected 10 lines from the line-scan image and calculated the average of the blood 
flow velocity (mm/s) from 10 lines. The range of detection of blood-flow velocity depends on 
the frame rate of the CMOS image sensor. Our image sensor operates within 1 to 120 fps. The 
range of the detection was 0.075 to 15 mm/s (measurement pixel number: 50; measurement 
frame number: 200). After obtaining the line-scan data, the data in the longitudinal area and 
the lateral lines were averaged to remove noise. 

For brain-activity measurement, the device measured brightness changes of the brain 
surface. Capillary blood vessels were not obtained, running throughout the brain surface. 
When brain activities occur, blood-flow volume of capillary blood vessels is increased 
temporarily for delivering sustenance and oxygen to neurons. In this experiment, we show the 
result of this. The value of Fig. 6(a) indicates the average of the pixel value rate (%) of the 
mean value, R, of the ROI (9 × 9 pixels). The pixel value rate was calculated from ΔR/R0. R0 
is the average value of the ROI in measurement time. ΔR was calculated from R-R0. 

3. Results

3.1 Conditions of the mouse cerebral surface with the chronic real-time imaging 
system 

We observed conditions of the brain surface through the chronic FOP window after 
implantation. Figures 1(d) and (e) show pictures of the chronic FOP window captured on the 
day of surgery and 33 days afterwards. The brain surface kept good conditions one month 
afterwards. The chronic FOP window demonstrated use in long-time stable conditions. 

Figures 3(a) and (b) show the brain-surface images captured by a commercial camera. The 
brain surface had a small hemorrhage on the edge. However, the observation area had no 
damage, and the blood vessels were in good condition. The chronic FOP window had no 
effect on mouse behavior. The imaging device observed the same brain surface area in Fig. 
3(c). The blood vessels appeared as black lines in this image, because the green light was 
effectively absorbed by the hemoglobin in the red blood cells. 

In Fig. 4, the blood-flow velocity was measured with an imaging device. We set the 
device to a frame rate 66.41 fps and an exposure time 15.06 ms. The blood-flow velocity was 
analyzed by subtracting the images and the line scan images. In Visualization 1, the 
subtracted images made from the brain surface images. The blood flow was observed. An 
analysis of the blood-flow velocity was performed in a part of the line, as shown in Fig. 4(a). 
The results of the line scan are shown in Fig. 4(b). The direction of the slope was the direction 
of the blood flow, and the estimate of the slope shows the blood-flow velocity. The results of 
the blood-flow velocity are shown in Fig. 4(b). The blood-flow velocities of the vessel were 
estimated, as shown in Fig. 4(b). The velocities were 0.88 mm/s, 1.13 mm/s, and 1.22 mm/s. 
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This device could simultaneously measure the blood-flow velocity and brain activity. These 
results suggested that the chronic brain blood-flow imaging device could be used for the 
development of a therapeutic methods for cerebrovascular disease [21]. The treatment effect 
and recovery process applying to cerebrovascular disease could also be determined by the 
devices ability to provide long-term observation in a freely moving experiment. 

5. Conclusion 

A chronic brain blood-flow imaging device was developed, and blood-flow measurement was 
demonstrated in a freely moving experiment using a mouse. This device comprised a small 
image sensor based on CMOS integrated circuit technology and a chronic FOP window on 
the mouse head. The chronic brain blood-flow imaging device obtained the blood-flow 
velocity of the cortex through the chronic FOP window. The chronic brain blood-flow 
imaging device observed clear brain surface images through the chronic FOP window 1 week 
after implantation. The blood-flow velocity and brain activity were obtained in the freely 
moving experiment using the device. The chronic brain blood-flow imaging device performed 
long-term brain imaging. The device can be used in long-term behavioral experiments for the 
development of therapeutic methods for treating cerebrovascular disease. The advantages of 
this device include its usefulness for experimentation, such as drug discovery research and 
disease research. 
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